If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+7y-4.25=0
a = 3; b = 7; c = -4.25;
Δ = b2-4ac
Δ = 72-4·3·(-4.25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-10}{2*3}=\frac{-17}{6} =-2+5/6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+10}{2*3}=\frac{3}{6} =1/2 $
| 88=0.5h(4+7) | | -8n+4(1+5n)=-3n-26 | | x^2+(2x-10)^2=25^2 | | -8/5=1/2u-8/3 | | 2k^2+k-24=-3 | | 88=1/2h(4+7) | | x/3+60=2x | | 2k^2+k-21=0 | | 11m-8m-3=15 | | 1.4x-3.3=6.5 | | x2+11x+121=x+96 | | -4x=1-5 | | 35=7/4y-13/ | | 6x+7=-55 | | 10(4x+12)=-8(-10-4x)+6x | | -2n-40=2(-7n+4) | | 12f+1=5f+92 | | 35=7/4y-13 | | 20g-14g-(-7)=-11 | | y÷9=-8 | | 6-2(x+9)=120 | | 31+5x=1-7x | | 350x+50=1100 | | 9(x-2)/3=6(x+2)/10 | | 912+e=1,201 | | -10x+28=-9x-10 | | -10x+28=-9-10 | | p+12,982=25,000 | | 2n+17+5n+37=180 | | 3=(v-2)/2 | | 15+5(z-2)=4z-5 | | -70+6x=2+3x |